Customize Consent Preferences

We use cookies to help you navigate efficiently and perform certain functions. You will find detailed information about all cookies under each consent category below.

The cookies that are categorized as "Necessary" are stored on your browser as they are essential for enabling the basic functionalities of the site. ... 

Always Active

Necessary cookies are required to enable the basic features of this site, such as providing secure log-in or adjusting your consent preferences. These cookies do not store any personally identifiable data.

No cookies to display.

Functional cookies help perform certain functionalities like sharing the content of the website on social media platforms, collecting feedback, and other third-party features.

No cookies to display.

Analytical cookies are used to understand how visitors interact with the website. These cookies help provide information on metrics such as the number of visitors, bounce rate, traffic source, etc.

No cookies to display.

Performance cookies are used to understand and analyze the key performance indexes of the website which helps in delivering a better user experience for the visitors.

No cookies to display.

Advertisement cookies are used to provide visitors with customized advertisements based on the pages you visited previously and to analyze the effectiveness of the ad campaigns.

No cookies to display.

Login

News

Researchers Devise a Method to 3D Print Objects Out of Proteins

Adam Feinberg, Carnegie Mellon professor of biomedical engineering.

A research team at Carnegie Mellon University has developed a technique for 3D printing tissue scaffolds out of collagen, the major structural protein in the human body. This brings the field of tissue engineering one step closer to being able to 3D print organs and tissues.

The technique, called freeform reversible embedding of suspended hydrogels (Fresh), overcomes many of challenges a in 3D printing tissues and gives biomedical engineers higher levels of resolution and fidelity for printing soft and living materials.

Researchers at Carnegie Mellon adapted 3D printing for bioprinting, which uses the technology to make tissues and organs, as they tried to construct working components of a human heart.

“What we’ve shown is that we can print pieces of the heart out of cells and collagen into parts that function such as  a heart valve or a small beating ventricle,” says Adam Feinberg, a professor of biomedical engineering. “By using MRI scans of a human heart, we could accurately reproduce patient-specific anatomical structures and 3D bioprint collagen and human heart cells.”

Source: Machine Design

Click here for the full article.